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Abstract We have analyzed the relaxation properties of

all 31P nuclei in an RNA cUUCGg tetraloop model hairpin

at proton magnetic field strengths of 300, 600 and

900 MHz in solution. Significant H, P dipolar contributions

to R1 and R2 relaxation are observed in a protonated RNA

sample at 600 MHz. These contributions can be suppressed

using a perdeuterated RNA sample. In order to interpret the
31P relaxation data (R1, R2), we measured the 31P chemical

shift anisotropy (CSA) by solid-state NMR spectroscopy

under various salt and hydration conditions. A value of

178.5 ppm for the 31P CSA in the static state (S2 = 1)

could be determined. In order to obtain information about

fast time scale dynamics we performed a modelfree anal-

ysis on the basis of our relaxation data. The results show

that subnanosecond dynamics detected around the phos-

phodiester backbone are more pronounced than the

dynamics detected for the ribofuranosyl and nucleobase

moieties of the individual nucleotides (Duchardt and

Schwalbe, J Biomol NMR 32:295–308, 2005; Ferner et al.,

Nucleic Acids Res 36:1928–1940, 2008). Furthermore, the

dynamics of the individual phosphate groups seem to be

correlated to the 50 neighbouring nucleobases.

Keywords NMR spectroscopy � Isotope labeled RNA �
31P relaxation � Modelfree order parameter

Introduction

Many of ribonucleic acids (RNA) functions are related to a

multitude of RNA’s functional dynamics (Hashim 2007;

Al-Hashimi and Walter 2008). Bistable RNA for instance

can adopt different conformations of almost equal stabili-

ties (Hobartner and Micura 2003; Hobartner et al. 2004;

Wenter et al. 2005, 2006a, b; Fürtig et al. 2007a, b)

whereas riboswitch-RNA involved in transcriptional and

translational regulation undergo local as well as long-range

conformational dynamics upon metabolite binding (Tucker

and Breaker 2005; Winkler 2005; Lang et al. 2007; Rieder

et al. 2007; Schwalbe et al. 2007). RNA thermometers melt

local structure at ambient temperature and thereby regulate

translation (Chowdhury et al. 2006; Narberhaus et al. 2006;

Waldminghaus et al. 2007). Upon binding to different

ligands, TAR–RNA, a potential pharmacological target

RNA, can adopt different conformations, many if not all of

which are sampled in the free state of the RNA (Zhang

et al. 2006, 2007; Ferner et al. 2009).

RNA dynamics span a broad range of time scales from

picoseconds where vibrations and angular fluctuations occur

up to seconds where catalytic function and global refolding

take place (Fürtig et al. 2007a, b). Molecular dynamics (MD)

simulations provide a microscopic description of the

dynamic trajectories (Miller and Kollman 1997; Williams

and Hall 1999, 2000; Nina and Simonson 2002; Showalter

et al. 2005; Villa and Stock 2006).
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NMR spectroscopy can characterize dynamics faster

than the overall rotational correlation in the low nanosec-

ond regime from heteronuclear relaxation measurements

(R1, R2, R1q, and steady-state heteronuclear NOE) while

supra-sc motions can be detected from RDC measurements.

Subnanosecond dynamics detected in NMR experiments

and interpreted in the context of the so-called modelfree

formalism can be compared to order parameters predicted

from long MD simulations (Koplin et al. 2005; Duchardt

et al. 2008; Ferner et al. 2008). If these Lipari-Szabo order

parameters S2
LS are known it becomes possible to dissect

subnanosecond dynamics from supra-sc motions derived

from RDC measurements and interpreted by introduction

of a so-called RDC order parameter S2
RDC.

Various methods to determine the dynamic properties of

RNA have been developed so far. Techniques to determine
13C relaxation in small uniformly 13C-labeled RNAs

(Duchardt and Schwalbe 2005; Shajani and Varani 2005,

2007; Shajani et al. 2007; Ferner et al. 2008) and in large

specifically 13C-labeled RNAs (Johnson et al. 2006;

Johnson and Hoogstraten 2008) as well as 13C relaxation

dispersion methods are currently available (Hoogstraten

et al. 2000; Blad et al. 2005; Shajani and Varani 2005;

Oberstrass et al. 2008; Hansen et al. 2009). Measurement

of relaxation properties on samples with selective labeling

of specific 13C sites (Olsen et al. 1982; Schmidt et al. 1983,

1987; Williamson and Boxer 1989a, b; Gaudin et al. 1995),

uniform partial 13C enrichment (Kojima et al. 1998;

Boisbouvier et al. 1999) or at 13C natural abundance (Lane

et al. 1991; Borer et al. 1994; Spielmann 1998) have been

performed in order to investigate RNA dynamics of the

nucleobase and the ribose moieties. 15N relaxation in uni-

formly 15N-labeled RNA has been measured using methods

previously applied in the protein NMR spectroscopy (Akke

et al. 1997). Measurements of 15N relaxation properties,

however, are restricted to studies of imino resonances

involved in hydrogen bonding, since exchange with solvent

water is too rapid for conformationally non-stable parts of

the RNA.

Measurement of 31P relaxation rates in RNA provides a

direct reporter of conformational dynamics of the phos-

phodiester backbone. Such studies have been performed

previously for the sum of all 31P nuclei within RNA con-

stituted in whole virus particles (Kan et al. 1987; Magusin

and Hemminga 1994) or ribosomes (Odahara et al. 1994).

In this contribution, we provide for the first time a site-

resolved investigation of the phosphodiester backbone 31P

relaxation properties of a 14mer hairpin RNA. We inves-

tigated the cUUCGg tetraloop RNA which constitutes a

highly abundant structural RNA motif of extraordinary

stability [Tm *70�C, (Allain and Varani 1995)]. The

cUUCGg motif has been extensively studied and charac-

terized structurally both by NMR spectroscopy (Varani and

Tinoco 1991; Allain and Varani 1995; Lynch and Puglisi

2001) and X-ray crystallography (Ennifar et al. 2000).

A number of relaxation studies have been reported for

the UUCG tetraloop motif so far. Akke et al. (1997) ana-

lyzed the fast time scale motion on the imino resonances of

the cUUCGg tetraloop 14mer RNA at 273 K. An S2 order

parameter of 0.75–0.8 was extracted from the 15N relaxa-

tion data for all of the 1H–15N bond vectors in stable

hydrogen bonds. A model free analysis was also performed

on the basis of 13C relaxation data for the aromatic C6H6/

C8H8 bond vectors as probes for the nucleobases and the

C10H10 bond vectors as probes for the ribose moieties

(Duchardt and Schwalbe 2005; Ferner et al. 2009). S2 order

parameters between 0.87 and 0.99 were extracted for the

nucleobases in the A-form helical part of the RNA at a

temperature of 298 K. C10H10 bond vectors are well

defined with S2 order parameters between 0.90 and 0.94 in

the stem while the loop moieties as well as the ribose

moieties of G1 and C14 are slightly more flexible with S2

values between 0.84 and 0.89. In the UUCG tetraloop, U7

(S2 = 0.68) is more flexible than the rest of the nucleo-

bases. These findings could be reproduced by MD simu-

lations of the cUUCGg tetraloop RNA (Ferner et al. 2008;

Villa et al. 2008). Shajani et al. performed 13C relaxation

studies for the C5/C6/C8 and the C10 nuclei on a different

RNA bearing a cUUCGg tetraloop (Shajani and Varani

2005). Using an isotropic model for the overall tumbling,

S2 order parameters around 0.9 were obtained for the ribose

moieties at a temperature of 298 K. The nucleobases in

A-form helical parts of the RNA show S2 order parameters

of around 0.9. For the loop nucleobases varying flexibilities

with S2 values of 0.66–1.0 were reported. In a second

study, S2 order parameters were extracted using different
13C CSA values extracted from liquid crystal measure-

ments (Shajani and Varani 2007). These S2 order parame-

ters lie between 0.94 (first loop uracil nucleobase) and 0.73

(second loop uracil nucleobase) and are very similar to the

S2 order parameters reported by Ferner et al. (2008). Hall

and coworkers analyzed the effects of 20 ribose substitu-

tions on the thermodynamic stability of UUCG tetraloops

by experimental (UV melting curves) and computational

methods (Williams and Hall 1999, 2000; Williams et al.

2001) showing the important role of the 20 hydroxyl group

of the first loop uridine on the thermodynamic stability of

the UUCG tetraloop.

One obstacle for the interpretation of 31P R1 and R2

relaxation rates is the fact that in protonated RNA samples,

every phosphorous atom experiences a dipolar field of

protons three or four freely rotatable bonds apart, which

makes the dipolar contribution to the relaxation dependent

on the phosphodiester backbone conformation. We cir-

cumvented the problem of quantifying the dipolar relaxa-

tion contributions by the use of a perdeuterated RNA
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sample for our measurements. Furthermore, the size and

orientation of the 31P CSA tensor without dynamic con-

tributions is still not absolutely known. Therefore, we

performed solid-state NMR measurements under various

salt and hydration conditions to derive the three principal

axis components of the CSA tensor in the static state. Using

the valid CSA value, we performed a modelfree analysis of

our 31P relaxation data in order to obtain site specific

information about fast time scale dynamics of the phos-

phodiester backbone of the 14mer hairpin RNA.

Methods

Sample preparation

Liquid-state NMR measurements were performed using a

uniformly 2H-labeled 14mer cUUCGg tetraloop RNA

sample with the sequence 50-PO4
2-–PO3

-–PO3
-GGC

AC(UUCG)GUGCC-OH-30. The sample was purchased

from Silantes GmbH (Munich, Germany). The secondary

structure of the molecule is shown in Fig. 1a. The RNA

was desalted using Vivaspin 20 concentrators with a

molecular weight cutoff (MWCO) of 3,000 Da from Sar-

torius stedim biotech (Aubagne Cedex, France). Refolding

of the RNA was achieved by denaturing for 10 min at a

concentration of 0.25 mM and a temperature of 95�C fol-

lowed by 20-fold dilution with ice cold water and sub-

sequent incubation at 0�C for another 30 min. The RNA

was concentrated and exchanged to NMR buffer using

Vivaspin 20 concentrators (MWCO = 3,000 Da). The

correct folding of the RNA was verified by native poly-

acrylamide gel electrophoresis. The final NMR sample

contained 0.8 mM RNA, 20 mM KxHyPO4 (pH 6.4 in

H2O), 50 mM KCl, 0.4 mM EDTA and 99.99% D2O. A

13C, 15N-labeled 14mer cUUCGg RNA tetraloop sample

was used for the resonance assignments of the 31P nuclei at

37�C. The sample was prepared in the same way as the
2H-labeled sample.

Solid-state NMR measurements were performed using

an unlabeled chemically synthesized 20mer RNA with the

sequence 50-OH-GCGCGCGCGCGCGCGCGCGC-OH-30.
The RNA was purchased from Dharmacon (Boulder, CO).

The RNA was deprotected and freeze-dried following the

protocol provided by the manufacturers. Subsequently, the

RNA was dissolved in water and precipitated at -20�C

overnight using 5 volumes of 2% LiClO4 in acetone. The

precipitate was dissolved in water. Refolding of the RNA

into the duplex conformation was achieved by denaturing

for 20 min at a concentration of 1 mM at 95�C followed by

slow cooling to room temperature within 30 min. Buffer

exchange was achieved using Vivaspin 20 concentrators

(MWCO = 3,000 Da). The correct folding of the RNA

was verified by native polyacrylamide gel electrophoresis.

RNA samples measured in frozen buffer were frozen

directly in the NMR spectrometer, while RNA samples

measured as a freeze-dried powder were exchanged to the

appropriate buffer solution, frozen with liquid nitrogen and

freeze-dried. One of the freeze-dried samples was equili-

brated to 84% air humidity in an exsiccator within 4 days

using a buffer reservoir filled with a saturated KCl/H2O

solution. All NMR sample buffers contained 10 mM MES,

pH 6.5 but different KCl concentrations between 0 and

1,000 mM, respectively.

Native gel electrophoresis

59 loading buffer was composed of 87% glycerol, 0.1%

(w/v) xylene cyanole FF and 0.1% (w/v) bromophenol

Fig. 1 a Secondary structure

of the cUUCGg tetraloop 14mer

RNA. b 31P-1D spectrum of the

perdeuterated cUUCGg 14mer

RNA recorded at a proton B0

field strength of 300 MHz and a

temperature of 37�C.

Parameters were set as follows:

1,024 scans, 3 s recycling delay

and 1.7 s acquisition time. c R1

relaxation rates of the cUUCGg

14mer RNA measured at a

proton B0 field strength of

600 MHz and a temperature of

37�C. R1 relaxation rates for the

protonated sample are depicted

as filled squares connected by a

solid line. R1 relaxation rates for

the perdeuterated sample are

depicted as filled triangles
connected by a dashed line
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blue. 19 running buffer contained 50 mM Tris-acetate and

50 mM sodium phosphate (pH 8.3). The gel was cast using

15% acrylamide with an acrylamide:bisacrylamide ratio of

37.5:1. Running conditions were set as follows: U = 70 V,

P \ 0.5 W for 4 h, water cooling to prevent heating. The

gel was stained with ethidium bromide.

Liquid-state NMR spectroscopy

NMR measurements were performed on three different

Bruker NMR spectrometers, a 300 MHz spectrometer

equipped with a 5 mm BBO z-gradient probe, a 600 MHz

spectrometer equipped with a 5 mm cryogenic HCP

z-gradient probe, and a 900 MHz spectrometer equipped

with a 5 mm HCP xyz-gradient probe. Transversal and

longitudinal relaxation data were obtained using modified

Bruker standard pulse sequences for R1 (t1ir) and R2

(cpmg) relaxation rate determination. The carrier fre-

quency was set to 0.61 ppm on the phosphate buffer signal.

To suppress the buffer signal, moderate presaturation with

cB1/2p = 2.5 Hz was applied during the magnetization

recovery delay of the cpmg and the t1ir pulse sequences

and during the variable R1 relaxation delay of the t1ir pulse

sequence. R1 relaxation data were acquired with a recycling

delay of 10 s. At 900 MHz (364.4 MHz; 31P), 16 incre-

ments with 480 scans each, at 600 MHz (242.8 MHz; 31P),

16 increments with 224 scans each and at 300 MHz

(121.4 MHz; 31P), 18 increments with 512 scans each were

used to determine R1. R2 relaxation data were acquired with

12 relaxation delay increments with 640 scans (600 MHz)

and 1,696 scans (300 MHz) each. A constant CPMG field

of 50 Hz was applied during the R2 relaxation period. The

recycling delay was set to 3 s. The resonance assignments

of the 31P nuclei at 25�C were taken from Fürtig et al.

(Fürtig et al. 2004). The resonance assignments at 37�C

were obtained by recording an HCP experiment with a

uniformly 13C, 15N-labeled cUUCGg tetraloop 14mer RNA

sample and transferring this assignment to the assignment

at 25�C.

Solid-state NMR spectroscopy

Measurements were performed on a Bruker 400 MHz

spectrometer equipped with a Bruker 4 mm DVT HXY

probe head. 31P-CP MAS spectra were acquired using a
1H 90� excitation pulse of 2.5 ls. The CP contact time

was optimized to 1,500 ls (RNA as freeze-dried powder)

and 2,500 ls (RNA in frozen buffer), respectively. 1H

decoupling (Spinal64) (Fung et al. 2000) was applied

during acquisition with a field strength of 70 kHz. The

recycling delay was set to 2 s. All spectra were

recorded with an MAS spinning rate of 2,000 or

3,000 Hz, respectively.

Data analysis

Solid-state NMR spectra

The size of the 31P CSA tensor was determined by ana-

lyzing the MAS spinning sideband intensities using the

lineshape analysis algorithms integrated in Topspin 2.1

(Bruker, Germany). The line width of the 31P spectra was

determined within the 31P tensor fitting procedure. It rep-

resents the average line width of the isotropic peak and all

sidebands.

From the 31P tensor, the magnitude of the CSA was

calculated using (Hansen and Al-Hashimi 2006)

CSA ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1:5 ½ðd11 � disoÞ2 þ ðd22 � disoÞ2 þ ðd33 � disoÞ2�
q

ð1Þ

Liquid-state NMR spectra

Spectra were processed and analyzed using Topspin 2.1

(Bruker, Germany). R1 and R2 relaxation rates were fit from

peak heights to two-parameter monoexponential functions

with the Software Sigma Plot 10.0 (Systat Software GmbH,

Germany).

The obtained relaxation parameters were further ana-

lyzed using the program modelfree 4.20 (Mandel et al.

1995). This program uses the modelfree formalism intro-

duced by Lipari and Szabo (1982a, b) and modified by

Clore et al. (1990). The dipolar relaxation term was set to

zero during the analysis. Model selection was achieved

according to d0Auvergne and Gooley (2003) using

Akaike‘s information criterion (AIC). The AIC is given by

AIC ¼ v2 þ 2k ð2Þ

k is the number of modelfree parameters in the model.

The overall rotational correlation time sc was optimized

during the modelfree fitting procedure and finally com-

pared to the outcome of a hydrodynamic calculation using

the program hydronmr 5a (Garcia de la Torre et al. 2000).

Rotational diffusion was assumed to be either isotropic or

axially symmetric. In case of axially symmetric diffusion,

the CSA tensor was oriented along the P-O30 bond. This

assumption differs by only 7� from the orientation of the

CSA tensor of barium diethylphosphate (Herzfeld et al.

1978). The initial diffusion tensor used for the modelfree

fitting was calculated on the basis of our NMR structure of

the cUUCGg tetraloop 14mer RNA (Nozinovic et al.

unpublished results) using the program hydronmr 5a

(Garcia de la Torre et al. 2000). During the modelfree

calculations, the diffusion tensor was allowed to adjust in

size and orientation. R1 relaxation rates recorded at mag-

netic fields of 300 MHz (121.4 MHz; 31P), 600 MHz

(242.8 MHz; 31P) and 900 MHz (364.4 MHz; 31P) and the
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R2 relaxation rates recorded at 600 MHz (242.8 MHz; 31P)

were used as input data for the modelfree calculation.

Results and discussion

R1 and R2 relaxation in solution are caused by fluctuations

in the local magnetic field surrounding the NMR-active

nuclei. For RNA, these fluctuations are mainly caused by

CSA and dipolar contributions. Dipolar contributions to the

relaxation of 15N- or 13C-nuclei are dominated by cova-

lently bound proton nuclei. In the case of 31P in the

phosphodiester backbone of oligonucleotides, no directly

bound proton is present but the 31P nucleus experiences the

influence of various hydrogens that are three or four bonds

apart (H30, H40 H50, H500, H20). Therefore, separation of

these two contributions is a prerequisite for the analysis of

the autocorrelated relaxation rates of the 31P nuclei of the

phosphodiester backbone of RNA. Magusin et al. (Magusin

and Hemminga 1994) calculated the contribution of dipolar

relaxation in R2 to be 37% at a proton magnetic field

strength of 300 MHz and 18% at a proton magnetic field

strength of 500 MHz. Consequently, the dipolar relaxation

mechanisms in protonated RNA molecules cannot be

neglected.

Dipolar relaxation terms

The dipolar interaction shows an r-6-dependence on the

distance between the two interacting nuclei. Therefore, it is

crucial to know the exact distance between the nuclei. The

fact that the protons causing dipolar relaxation are at least 3

bonds with flexible torsions (a, b; e, f; a, b, c; pseudoro-

tation phase P) apart from 31P nuclei in the phosphodiester

backbone of an RNA makes it difficult to determine exact
1H-31P distances. Therefore, the magnitude of the dipolar

relaxation contributions in protonated RNA samples to the
31P R1 and R2 relaxation rates are difficult to define.

In order to determine the dipolar contributions to R1

relaxation rates, we compared data from R1 relaxation

measurements for a protonated and a perdeuterated

cUUCGg tetraloop 14mer RNA (Fig. 1a). In this tetraloop,

the 31P signals are resolved in the 31P-1D spectrum (see 1D

spectrum recorded at a proton B0 field strength of 300 MHz

in Fig. 1b), making it possible to determine the 31P relax-

ation rates directly on the 31P spins without magnetisation

transfer from other nuclei using e.g. HCP (Marino et al.

1994) (Heus et al. 1994), HCP-CCH-TOCSY (Marino et al.

1995) or HP-TOCSY (Kellogg 1992) experiments. The

comparison of the R1 relaxation rates determined at a

temperature of 37�C is shown in Fig. 1c. R1 relaxation

rates of the protonated RNA are 0.4 Hz higher on average

than for the perdeuterated RNA. Hence, this difference is

caused by the sum of all 1H–31P dipolar relaxation con-

tributions because 2H–31P dipolar relaxation in the per-

deuterated sample should be scaled down by a factor of 16,

taking into account the lower gyromagnetic constants

and the difference in spin quantum number of 2H

(cD = 4.11*107T-1s-1; ID = 1) compared with 1H

(cH = 26.75*107T-1s-1, IH = 1/2). We calculate a maxi-

mum 2H–31P relaxation rate of 0.02 Hz, an effect we are

not able to detect given the experimental error of our

measurements.

CSA relaxation terms

In a perdeuterated RNA, the 31P nuclei of the phosphodi-

ester backbone can be treated as isolated spins and, when

care has been taken to exclude paramagnetic impurities,

only the CSA of the 31P nucleus causes its R1 relaxation. R2

relaxation rates are caused by CSA relaxation and chemical

exchange contributions. Hence, by analyzing both R1 and

R2, CSA relaxation terms can be separated from chemical

exchange terms.

If the rotational diffusion of the RNA is isotropic, then

the CSA contribution to R1 and R2 relaxation is only

dependent on the size but not on the orientation of the

CSA. However, if one assumes an axially symmetric dif-

fusion tensor, the relaxation depends on the orientation of

the CSA tensor with respect to the diffusion tensor of the

RNA molecule. This orientation can only be determined, if

the orientation of the CSA tensor within the molecular

frame of the phosphodiester backbone as well as the con-

formation of the phosphodiester backbone with respect to

the overall shape of the molecule is known.

The 31P CSA tensor: size and orientation

The orientation of the 31P CSA tensor within the molecular

frame was determined for barium diethyl phosphate as a

model compound mimicking the phosphodiester backbone

(Herzfeld et al. 1978). However, the size of the principal

axis values of the CSA tensor can be dependent on the

conformation of the phosphodiester backbone. For exam-

ple, such CSA tensor dependence has been reported for 15N

nuclei in the backbone of proteins (Fushman et al. 1998;

Kroenke et al. 1999; Loth et al. 2005; Hall and Fushman

2006).

In the seventies, the size of the principal axis values of

the 31P CSA tensor for RNA molecules were determined by

solid-state NMR measurements for polyU, polyG, polyC,

polyA and tRNA (Terao et al. 1977). From these values, the

CSA magnitude according to Eq. 1 calculates to 172.0 ppm

(tRNA), 174.7 ppm (polyU), 182.0 ppm (polyC), 173.2

ppm (polyG), 175.8 ppm (polyA). For double stranded

DNA, a phosphate CSA magnitude of 157.8 ppm could be
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derived from solid state NMR measurements (Heisaburo

1980). This CSA value is significantly smaller than the CSA

values reported for RNA. Since tRNA adopts predominantly

A-form helical conformation for most of the nucleotides,

an averaged value of 172 ppm was proposed to represent

the valid CSA value for RNA molecules. However, there

seems to be quite some difference in the size of the CSA

between these different molecules. Since polyN RNAs are

supposed to assume ensembles of random structures, these

differences are most intuitively explained by a pronounced

dependence of the CSA on the average conformation of the

phosphodiester backbone that then has to be different for

different homopolymeric oligonucleotides. Recently per-

formed DFT studies of the conformational dependence of

the 31P CSA tensor in the phosphodiester backbone of DNA

and RNA molecules further support this interpretation.

Taking the principal axis values from the DFT study, the

CSA magnitude calculates to 176.5 ppm for RNA (Prec-

echtelova et al. 2008). On the other hand, the dispersion

of isotropic chemical shift of 31P in the phosphodiester

backbone is very small (rCS = ± 1.5–2 ppm) (BMRB

database), which indicates a small conformational depen-

dence of the 31P CSA.

We conducted 31P solid-state NMR measurements on a

GC 20mer duplex RNA in order to determine the 31P CSA

magnitude for the relaxation analysis in solution. We con-

trolled by polyacrylamide gels that the duplex was exclu-

sively formed. Therefore, all nucleotides in this duplex are

supposed to adopt similar A-form helical conformations and

induce a very similar electronic environment for each 31P

nucleus. 31P-1D CP MAS spectra were recorded under a

variety of different conditions changing salt concentration,

humidity and temperature. The spectra were fit and principal

axis values of the 31P CSA tensor were determined. Figure 2

shows exemplarily a 31P-1D CP MAS solid-state NMR

spectrum of the freeze-dried GC-20mer duplex RNA in the

absence potassium chloride (KCl) measured at a proton

carrier frequency of 400 MHz (161.976 MHz, 31P) and a

temperature of 250 K. In green, the simulated spectrum

assuming one single 31P CSA tensor is shown. Apparently,

the assumption of a single 31P CSA tensor is sufficient to

precisely simulate the experimental spectrum. Accordingly,

the 38 31P nuclei in the complex either assume very similar

conformations or the conformational dependence of the CSA

tensor is small. We analyzed the 31P CSA for different KCl

concentrations and temperatures and investigated the dif-

ferences between freeze-dried RNA and RNA measured in

frozen buffer. The results are summarized in Table 1.

In ice, the 31P CSA is 160.5 ppm and is not dependent

on varying KCl concentrations. In contrast, the 31P CSA is

much larger for freeze-dried RNA samples and shows a

dependence on the KCl concentration, albeit not in the

physiological concentration range. The CSA value

increases with the salt concentration from 178.5 ppm in the

absence of KCl to 188.9 ppm for 1 M KCl. If the freeze-

dried sample is equilibrated to 84% air humidity, the CSA

reduces to 157.4 ppm.

It was reported previously for collagen fibrils (Reichert

et al. 2004) that fast to intermediate time scale dynamics

affect the apparent CSA value determined by solid-state

NMR measurements. These dynamics can be expressed by

an order parameter S which scales the unperturbed CSA

value. For collagen fibrils, S depends on the hydration

level. Odahara et al. (1994) reported the dependence of the
31P CSA tensor on temperature in pelleted ribosome sam-

ples as well as the dependence of the 31P CSA tensor of

calf thymus DNA on relative air humidity and temperature.

The homogenous line width of the side bands of tobacco

mosaic virus (TMV) samples was determined to be 90 Hz,

while the inhomogeneous line width greatly differs with a

pronounced dependence on the water content of the sample

(Hemminga et al. 1987). This inhomogeneous line broad-

ening was interpreted as conformational heterogeneity that

is averaged out in samples with higher water content.

Finally, Magusin and Hemminga (1993, 1994) performed a

detailed relaxation and CSA tensor analysis on M13 virus

as well as on TMV samples. In this study, the change in

line width was interpreted as arising from fast restricted

fluctuations of the dihedral angles in the phosphodiester

backbone. Taken together, due to dynamics on the ls time

scale, the size of the principal axis values of the observed
31P CSA tensor as well as the line width of the sidebands

depend strongly on sample preparation.

Fig. 2 31P-1D CP MAS solid-state NMR spectrum of the freeze-

dried GC-20mer duplex RNA without KCl measured at a proton B0

field of 400 MHz and a temperature of 250 K (black line). Acqui-

sition parameters were set as follows: MAS rotation frequency 3 kHz,

CP contact time 1.5 ms, 1H decoupling field strength 70 kHz,

recycling delay 2 s, scans 6,400. The chemical shift of the isotropic

signal is -1.5 ppm. The green line represents the simulated spectrum.

The principal axis values of the 31P CSA tensor derived from the

simulation are given in Table 2
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In the case of the GC 20mer duplex RNA, 84% air

humidity seems to introduce dynamics of the phosphodi-

ester backbone, thereby reducing the order parameter and

the apparent CSA from 174.4 ppm to 157.4 ppm. In line

with this observation, the line width diminishes from 723 to

403 Hz. If one compares these values to the CSA tensor

values obtained for RNA samples measured in ice, the

reduction in both CSA and line width indicates that the

phosphodiester backbone of RNA samples in ice experi-

ences significant dynamics. The effects on CSA and line

width are consistent: the smaller the magnitude of the CSA,

the smaller the line width. Consequently, we can conclude

that the CSA value representing a static case has to be

larger or equal to 178.5 ppm.

There are two possible explanations for the observed

dependence of the CSA on the KCl concentrations of

freeze-dried RNA samples. It might be possible that K?

cations influence the electron density around the 31P

nucleus. This effect would only be present if cations come

very close to the 31P nucleus, like in the freeze-dried state

of the RNA. In this case, 178.5 ppm is the correct CSA

magnitude because in solution at 50 mM KCl the mean

distance between K? ion and phosphate group is too large

to cause such an effect. Alternatively, the KCl dependence

could arise from a dynamic effect where small K? and Cl-

ions fill up gaps between phosphodiester backbone sides in

the RNA and thereby stiffen the phosphodiester backbone.

In this case, a CSA value of 188.9 ppm determined at high

KCl concentrations in the freeze-dried state would be valid

for the relaxation analysis in solution.

We consider the K? ions influence on the electron

density of the phosphate group to be the more likely

explanation, since there is no further increase in line width

upon an increase of KCl in the freeze-dried state. There-

fore, we performed the analysis of the liquid-state NMR

data with a CSA magnitude of 178.5 ppm. However, we

also examined the effect of different 31P CSAs on the

outcome of the modelfree analysis.

Our data show that the CSA magnitudes determined on

freeze-dried RNA samples depend strongly on sample

preparation. This dependence on sample preparation might

explain the large differences in CSA magnitudes for the

phosphodiester backbone determined by solid-state NMR

previously. In our opinion, the conformational dependence

of the CSA is small judged by the small chemical shift

dispersion observed in solution, at least for the allowed

backbone angle combinations. Therefore, we assumed a

constant CSA value of 178.5 ppm for all phosphodiester 31P

nuclei within the cUUCGg 14mer RNA, which is very close

to the CSA value determined by DFT calculations for

A-form RNA (Precechtelova et al. 2008). In proteins, the

isotropic chemical shift dispersion for the backbone 15N

nuclei is 25–30 ppm. However, the conformational depen-

dence of the 15N CSA was found to be only 5–10% (Kroenke

et al. 1999; Loth et al. 2005). Therefore, relaxation analysis

in proteins is usually performed with the assumption of a

constant 15N CSA value. In RNA the chemical shift dis-

persion of the phosphodiesters is only ±1.5-2 ppm. (BMRB

database). Although the conformational dependence of the
31P CSA has not yet been determined experimentally, it is

presumably much smaller than the conformational depen-

dence of the backbone 15N CSA in proteins. Hence, the

assumption of a constant CSA value for all phosphodiester

nuclei is likely to lead to reasonable results.

Relaxation analysis of the perdeuterated RNA

Figure 3a, b show representative 31P relaxation decay

curves for R1 and R2 at a proton B0 field strength of

600 MHz and 37�C. These curves can be fitted

Table 1 Experimental 31P chemical shift tensor principal values, the corresponding isotropic chemical shift values, the CSA values calculated

according to Eq. 1 and the line widths extracted from the CSA fits

Sample KCl (mM) T (K) d11 (ppm) d22 (ppm) d33 (ppm) diso (ppm) CSA (ppm) Line width (Hz)

Icea 0 250 79.8 17.8 -102.7 -1.68 160.7 313

Icea 50 250 79.2 17.6 -101.9 -1.68 159.5 315

Icea 100 250 80.4 17.6 -103.1 -1.73 161.5 298

Icea 1,000 250 79.4 18.1 -102.4 -1.60 160.2 308

Freeze-driedb 0 250 86.4 23.8 -115.0 -1.61 178.4 979

Freeze-driedb 500 250 88.6 25.6 -119.4 -1.73 184.8 989

Freeze-driedb 1,000 250 89.9 27.5 -122.3 -1.63 188.9 987

Freeze-driedb 100 310 85.8 22.2 -111.5 -1.18 174.4 723

84% humidc 100 310 79.1 17.0 -99.8 -1.24 157.4 403

Data were obtained on GC-20mer duplex RNA samples under different salt concentrations and at different temperatures
a RNA sample measured in frozen buffer
b Freeze-dried sample (corresponds to 0% air humidity)
c Freeze-dried sample equilibrated to 84% air humidity
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monoexponentially, indicating that the RNA sample prep-

aration is homogenous and monomeric. R1 relaxation rates

were determined for a perdeuterated cUUCGg tetraloop

14mer RNA solubilized in a 100% D20 buffer at different

proton B0 magnetic field strengths of 300, 600 and 900 MHz

(Fig. 3c) at a temperature of 37�C. As expected for mole-

cules with an overall tumbling rate sc around 2 ns, R1

relaxation rates increase with B0 magnetic field strength.

However, this field dependence seems to be different for

some of the 31P nuclei. For instance, the R1 relaxation rates of

the phosphates p2, p10 and p14 show a higher B0 field

dependence than the other 31P nuclei. Apparently, the loop

phosphates p7 and p9 show small R1 relaxation rates while p8

shows a high R1 relaxation rate when compared at the same

B0 field strength. This characteristic trend is prominent at

300, 600 and 900 MHz (Table S3, Supplementary Material).

R2 relaxation rates were determined at proton B0 mag-

netic field strengths of 300 MHz (Table S3, Fig. S2, Sup-

plementary Material) and 600 MHz at a temperature of

37�C (Fig. 3d; Table S3, Supplementary Material). The R2

relaxation rates recorded at 600 MHz lie between 9.6 and

11.8 Hz, while the phosphates of the hairpin loop p7, p8,

p9, p10 show slightly lower R2 rates than the other phos-

phates. The only exception is p2 which has a significantly

higher R2 relaxation rate (14.75 Hz). Furthermore, this p2

signal appears to be weaker and broader than all other

phosphate signals in the 31P-1D (Fig. 1b) spectrum. This

observation suggests a significant chemical exchange

contribution to the R2 relaxation rate of phosphate p2.

Modelfree analysis

As input data for the modelfree analysis, R1 relaxation rates

recorded at proton B0 magnetic field strengths of 300, 600

and 900 MHz and R2 relaxation rates recorded at a proton B0

magnetic field strength of 600 MHz at 37�C were used. The

R2 relaxation rates recorded at a proton B0 magnetic field

strength of 300 MHz were not used as input, but as cross

validation data of the selected motional model (Fig. S2,

Supplementary Material). The results of the model-free

analysis assuming a 31P CSA magnitude of 178.5 ppm are

summarized in Table 2. Modelfree parameters S2, S2
s , S2

f , se,

Rex and the selected model are given for an isotropic as well

as for an axially symmetric rotational diffusion tensor.

In addition, the modelfree analysis was performed

assuming 31P CSA magnitudes of 168 and 188.9 ppm,

respectively. The modelfree parameters are given in Table

S1 (CSA = 168 ppm), and Table S2 (CSA = 188.9 ppm)

of the Supplementay Material. Figure 4 shows the S2 order

parameters extracted from the modelfree analysis for dif-

ferent CSA values of 168, 178.5 and 188.9 ppm assuming

isotropic rotational diffusion. In addition, the S2 values for

Fig. 3 a R1 relaxation decay curves for the 31P nuclei p6 and p7 at a

proton B0 field strength of 600 MHz and a temperature of 37�C. Peak

intensities are plotted against the relaxation delay. b R2 relaxation

decay curves for the 31P nuclei p6 and p7 at a proton B0 field strength

of 600 MHz and a temperature of 37�C. Peak intensities are plotted

against the relaxation delay c R1 relaxation rates of the 31P nuclei of

the cUUCGg 14mer RNA measured at different proton B0 field

strengths of 300 MHz (filled triangles), 600 MHz (filled squares) and

900 MHz (open circles) at a temperature of 37�C. d R2 relaxation

rates of the 31P nuclei of the cUUCGg 14mer RNA measured at a B0

field strength of 600 MHz at a temperature of 37�C
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a CSA value of 178.5 ppm assuming axially symmetric

rotational diffusion are illustrated.

A comparison of the S2 parameters for the different CSA

values (Fig. 4) shows that for fitting the relaxation data to

the Lipari Szabo model the S2 parameters and the CSA

values are inversely correlated. However, a comparison of

the individual 31P nuclei reveals that the relative trend for

the S2 values remains unchanged. The CSA simply scales

the S2 order parameters even without changing model

selection, sc, Rex or S2
s . However, 31P nuclei described by

model 2 experience minor shifts of se towards longer

timescales in case of smaller CSA values. It is not possible

to discriminate between different CSA magnitudes by

statistical methods since the final residual errors are

comparable in size (v2 = 11.89 (CSA = 188.9 ppm),

v2 = 11.98 (CSA = 178.5 ppm) and v2 = 12.42 (CSA =

168 ppm)). However, as discussed above, our solid-state

NMR data indicate that assuming a CSA value of

178.5 ppm is reasonable.

A global rotational correlation time sc of 1.926 ns

derived from the modelfree analysis is in good agreement

with hydrodynamic calculations performed with the pro-

gram hydronmr 5a (sc = 1.94 ns) using the NMR solution

structure of the cUUCGg tetraloop 14mer RNA (Nozinovic

et al. unpublished results).

We analyzed the effect of anisotropic rotational diffu-

sion on the results of the modelfree analysis. Comparison

of the isotropic versus the axially symmetric diffusion

model (Table 2; Fig. 4) clearly shows that there are only

small differences in the final result of the modelfree anal-

ysis for the 14mer RNA with an asymmetry of the rota-

tional diffusion tensor of *1.2. Residual overall errors are

comparable with v2 = 11.98 (CSA = 178.5 ppm) for the

isotropic and v2 = 12.54 (CSA = 178.5 ppm) for the

Table 2 Results of the 31P modelfree analysis of the cUUCGg tetraloop RNA

S2 S2
s S2

f se (ps) Rex(s-1) Rotational

diffusion

Model

p2-G2 0.695 ± 0.022 79.9 ± 11.3 4.95 ± 1.46 Iso 4

0.690 ± 0.022 73.2 ± 11.3 5.25 ± 1.46 Aniso 4

p3-C3 0.778 ± 0.036 0.928 ± 0.041 0.839 ± 0.011 1,300 ± 1,167 Iso 5

0.821 ± 0.022 34.4 ± 12.2 Aniso 2

p4-A4 0.795 ± 0.009 26.2 ± 8.7 Iso 2

0.796 ± 0.009 25.4 ± 8.7 Aniso 2

p5-C5 0.748 ± 0.020 0.928 ± 0.020 0.807 ± 0.012 786 ± 553 Iso 5

0.745 ± 0.02 0.924 ± 0.022 0.806 ± 0.012 840 ± 563 Aniso 5

p6-U6 0.847 ± 0.011 23.1 ± 11.1 Iso 2

0.847 ± 0.011 23.6 ± 11.0 Aniso 2

p7-U7 0.691 ± 0.009 24.2 ± 4.8 Iso 2

0.682 ± 0.011 22.5 ± 5.1 0.42 ± 0.24 Aniso 4

p8-C8 0.662 ± 0.088 0.780 ± 0.103 0.849 ± 0.009 2,915 ± 1,522 Iso 5

0.670 ± 0.087 0.790 ± 0.102 0.849 ± 0.009 2,872 ± 1,552 Aniso 5

p9-G9 0.733 ± 0.007 0.58 ± 0.38 Iso 3

0.741 ± 0.006 Aniso 1

p10-G10 0.663 ± 0.014 110.9 ± 9.2 Iso 2

0.654 ± 0.015 106.4 ± 9.5 0.49 ± 0.27 Aniso 4

p11-U11 0.855 ± 0.009 45.9 ± 14.6 Iso 2

0.850 ± 0.010 30.0 ± 15.3 0.33 ± 0.24 Aniso 4

p12-G12 0.790 ± 0.009 29.8 ± 7.7 Iso 2

0.792 ± 0.009 22.7 ± 8.0 Aniso 2

p13-C13 0.830 ± 0.006 Iso 1

0.826 ± 0.006 Aniso 1

p14-C14 0.779 ± 0.008 37.2 ± 7.7 Iso 2

0.779 ± 0.008 41.1 ± 7.7 Aniso 2

sc = 1.926 Iso

sc = 1.908 Daniso = 1.153 Aniso

The CSA value was set to 178.5 ppm. The analysis was performed with the assumption of either an isotropic or an axially symmetric rotational

diffusion tensor, respectively
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anisotropic model. Only p3 exhibits a larger deviation

which can be explained by a different model selection for

the anisotropic fit.

S2 values obtained by the modelfree analysis with a CSA

of 178.5 ppm lie between 0.66 and 0.86. 31P nuclei p2, p7,

p8, p9, p10 exhibit lower S2-values than the average. The

phosphate p2 is located next to the closing base pair of the

hairpin stem while p7, p8, p9, p10 are located in the hairpin

loop of the 14mer RNA presumably explaining why

phosphodiester backbone flexibility seems to be more

pronounced in these regions of the 14mer RNA molecule.

Highest S2 values are obtained for p6 (S2 = 0.847) and p11

(S2 = 0.855). While p11 is located within the A-helix of

the RNA hairpin next to the stable GC base pair, p6 is

located within the cUUCGg tetraloop. The dynamics of the

phosphodiester backbone appear to be significantly influ-

enced by the dynamics of the 50 neighboring nucleotide and

not by the 30 neighboring nucleotide. This observation

would also explain why p2 (S2 = 0.695) has a significantly

lower S2 than p14 (S2 = 0.779). Furthermore, the flexi-

bility of a certain base pair seems to influence the flexi-

bility of the 30 adjacent phosphodiester groups (Fig. 4).

Most of the phosphodiesters exhibit a fast motional

component on a timescale between se = 22 ps and

se = 111 ps. Only phosphates p9 and p13 show flexibility

that is faster than 20 ps. The sum of angular fluctuations of

the phosphodiester angles a, b, c, e and f within one con-

formation are thought to be the reason for this fast time

scale motion. In addition, p3 and p5 show motion on a

slower time scale. This motion has small amplitude and a

se around 1 ns. In contrast, p8 exhibits high amplitude

motion on an even slower timescale. Conformational

transitions between the two most stable sugar pucker

conformations C20-endo and C30-endo is on a time scale

around 1 ns while changes in phosphodiester backbone

conformation for the angles a, b, c, e and f are either not

observed at all or on a time scale of tens of nanoseconds as

reported for MD simulations performed on ApA, ApC,

CpA and CpC dinucleoside monophosphates (Vokacova

et al. 2009). From this MD study, Vokacova et al. could

show that transitions between different phosphodiester

backbone conformations occur as concerted flips of the

backbone angles. This strong mutual correlation might

explain why these transitions are comparably slow. Nev-

ertheless, angular fluctuations within one backbone con-

formation were observed for all backbone angles with

amplitudes of 30�–40�. These fluctuations may explain the

fast time scale motion obtained from the modelfree anal-

ysis of the phosphate groups in our study of the cUUCGg

tetraloop 14mer RNA. The small amplitude motion

reported for the nucleotides C3 and C5 might be due to

conformational dynamics in the sugar pucker conformation

of one of the adjacent sugars. A change in sugar confor-

mation would only cause a small angular rearrangement of

the phosphate group and such a conformational change is

known to occur on the same timescale. Phosphate p8

experiences motions on a slower time scale and of larger

amplitude than p3 and p5. p8 is the most exposed

Fig. 4 S2 order parameters for the 31P nuclei in the cUUCGg

tetraloop 14mer RNA determined at a temperature of 37�C. S2

parameters are depicted for different CSA values of 168 ppm (blue),

178.5 ppm (black) and 189 ppm (red). For a CSA value of

178.5 ppm, the effect of isotropic (black) versus anisotropic (green)

rotational diffusion is illustrated. S2 parameters of 31P nuclei located

on the 30 side with respect to base pairs are connected by dotted lines
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phosphate within the cUUCGg tetraloop 14mer RNA and is

supposed to be the most flexible one. It might be that this

phosphodiester group is an exception to the rule and con-

formational backbone rearrangement for p8 is on a time-

scale of low ns regime.

Phosphate p2 experiences a significant chemical

exchange contribution of Rex = 5.0 ± 1.5. This phosphate

is located 30 of G1 which participates in the closing base

pair of the 14mer hairpin RNA. Indeed, it has been reported

earlier that 31P nuclei experiencing chemical exchange on

the millisecond timescale can be correlated to base pair

lifetimes in duplex DNA (Catoire 2004). Imino-1D spectra

recorded on an H20 sample of the cUUCGg tetraloop

14mer RNA at different temperatures show significant line

broadening, suggesting destabilization of the G1–C14 base

pair at T = 37�C (Nozinovic et al. unpublished results).

Conclusion

We have measured 31P relaxation rates and analyzed these

rates following the Lipari-Szabo formalism for a 14mer

cUUCGg tetraloop RNA. The cUUCGg tetraloop repre-

sents the most stable tetraloop motif and its dynamic

properties have previously been investigated (Duchardt and

Schwalbe 2005; Shajani and Varani 2005; Vallurupalli and

Kay 2005; Ferner et al. 2008) for the base and the sugar

moieties. This model hairpin therefore represents an ideal

model system to measure 31P relaxation properties for each

phosphate along the phosphodiester backbone for the first

time. Such site resolution could be achieved due to

favorable dispersion in the 31P chemical shifts of the

cUUCGg tetraloop. For larger RNA molecules, measure-

ment of 31P relaxation properties with site resolution,

however, becomes feasible, when selective deuteration

schemes such as H10,D20,D30,D40,D50,D500-labeled nucleo-

tides are used and if P–C–H coherence transfer schemes are

applied to resolve individual 31P resonances in the

H10–C10 two dimensional plane of such experiments.

As previously predicted (Magusin and Hemminga

1994), 31P relaxation is influenced by H–P dipolar contri-

butions in protonated RNAs. In order to eliminate this

distance-dependent effect, we performed our R1 and R2

relaxation analysis using a perdeuterated sample of the

tetraloop RNA. For the interpretation of the relaxation rates

in the context of the modelfree formalism, it is essential to

know size and, in case of anisotropic rotational diffusion,

also the orientation of the 31P CSA tensor. In order to

address the first part, we performed solid-state NMR

experiments and showed that there is a pronounced

dependence of the CSA on hydration. This effect can be

explained by dynamics on the ns to ls timescale and is in

agreement with previous 31P solid-state NMR studies

performed on TMV (tobacco mosaic virus) and M13 virus

samples (Hemminga et al. 1987; Magusin and Hemminga

1993, 1994). Furthermore, we discovered changes in the

CSA upon addition of 1 M KCl for RNA samples in the

freeze-dried state. Based on our analysis, we propose a

value of 178.5 ppm for the 31P CSA in the static case.

On the basis of this CSA, we observed that, with

exception of the flexible nucleobase U7, the phosphodiester

backbone is more flexible than the ribose (C10–H10) and the

nucleobase (C8–H8, C6–H6) moieties (Duchardt and

Schwalbe 2005; Ferner et al. 2008). Furthermore, the

dynamics of the phosphodiester backbone appear to be

significantly influenced by the dynamics of the 50 neigh-

boring nucleotide (Fig. 4). Order parameters derived from

MD simulations have proven to be consistent with NMR

derived order parameters of the CH bond vectors in the

ribose and the nucleobase moieties. It will be the subject of

future investigations to see whether MD simulations are

also able to reproduce the results obtained by means of

NMR spectroscopy concerning the dynamics of the phos-

phodiester backbone. Such investigation will be helpful to

understand the dynamic properties of RNA molecules,

especially for the dynamic hinge defined by rotation around

the f, a torsions of RNA.
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